Quickstart to the Moon: Difference between revisions

From Project Apollo - NASSP
Jump to navigation Jump to search
imported>Lassombra
imported>Lassombra
mNo edit summary
Line 1: Line 1:
{{Attention | message=This is a work in progress as I follow Tschachim's flight and create screen shots and scenarios.  So far, it is done through TLI.  To use the related scenarios, you'll need Jarmo Nikkanen's [http://koti.mbnet.fi/jarmonik/Orbiter.html Interplanetary MFD (IMFD) 4.2.1] installed and active.  If you can't find the referenced scenarios, make sure you do a CVS update.}}
{{Attention | message=This is a work in progress as I follow Tschachim's flight and create screen shots and scenarios.  So far, it is done through Mid Course Corrections and Trans Lunar Coast.  To use the related scenarios, you'll need Jarmo Nikkanen's [http://koti.mbnet.fi/jarmonik/Orbiter.html Interplanetary MFD (IMFD) 4.2.1] installed and active.  If you can't find the referenced scenarios, make sure you do a CVS update.}}


The first thing to do is make sure you have [[Installation|NASSP 7.0 Beta installed]].  As of the writing of this, it is entirely possible to get to the moon and back in quick start ("Orbiter") mode.
The first thing to do is make sure you have [[Installation|NASSP 7.0 Beta installed]].  As of the writing of this, it is entirely possible to get to the moon and back in quick start ("Orbiter") mode.

Revision as of 19:51, 13 November 2007

Attention
This is a work in progress as I follow Tschachim's flight and create screen shots and scenarios. So far, it is done through Mid Course Corrections and Trans Lunar Coast. To use the related scenarios, you'll need Jarmo Nikkanen's Interplanetary MFD (IMFD) 4.2.1 installed and active. If you can't find the referenced scenarios, make sure you do a CVS update.

The first thing to do is make sure you have NASSP 7.0 Beta installed. As of the writing of this, it is entirely possible to get to the moon and back in quick start ("Orbiter") mode.

Launch

Let's start by loading up the "Apollo 14 Quickstart - Launch" Scenario in your "Project Apollo - NASSP\Quickstart Missions\Apollo 14" folder. Thanks to the switch flipping abilities of your virtual copilots (only available in quickstart mode) you can sit back and watch the launch. However, since we all want something to do during the launch, I'd recommend aligning the GDC. It's a few simple switches to flip, and while your copilot does do this, it tends to get out of alignment by the time launch happens.

GDC Alignment, Launch Checklist
Switch Panel Action Explanation
FDAI Select 1 Switch to 1 When in 1/2 mode, the FDAI's are both controlled by the computer. Setting 1 allows user control.
FDAI Source 1 Switch to ATT SET This unlocks the user of the attitude set controller
ATT SET 1 Switch to GDC This allows the pilot to compare the set values to the GDC orientation.
FDAI 1 1 Confirm needles centered This means that the GDC is properly aligned for launch. If so, skip the next item.
GDC Align 1 Push if needles not centered This actually aligns the GDC properly for launch.
FDAI Select 1 Switch to 1/2 Returns control of the FDAI's to the computer, guided by the IMU/GDC

With that complete, the only thing left is to switch propellant indicators on panel 1 to the launch vehichle and sit back and enjoy the ride.

Pre-launch Propellant indication selection
Switch Panel Action Explanation
LV/SPS IND a/Pc 1 a Monitor the pressure of the LV engines
LV/SPS IND SII/SIVB/GPI 1 SII/SIVB Monitor the fuel left in the second and third stages.

Eventually you will reach orbit. And then there's a bit more that needs doing. This is where the scenario "Apollo 14 - After Earth Orbit Insertion" joins in the fun

Orbit

Orbiting the earth is a simple process. For the most part, you just ride along. In quickstart mode, there is no systems management that is required of you. However, there is much that is still available. For example, you can rotate so you have a clear view of the stars through all windows. While in earth orbit, you do not have linear RCS available. Circularizing the orbit, making a perfect approach over a target, these things that are typical of Orbiter are not usually done in Apollo, so we're going to skip over them.

In the normal Apollo missions, the time of these first two parking orbits was used to test out the navigation equipment. Astronauts would take star sightings and input them into the computer which would align the IMU. On a later pass, they'd repeat, but then check the difference to measure IMU drift. This, along with several other factors regarding the health of the spacecraft would decide whether they were "Go for TLI." All of this inspection work is done automatically for you in Quickstart mode, and your ship always checks out. So, it's time to calculate TLI.

TLI

Calculating the TLI is a difficult process. There is an article already in place about it, so I'm simply going to post the "simple" version here.

First, open IMFD on both main MFD's. You'll want to set them to shared mode.

On one MFD select Course and "Off-Plane Intercept" Set the TEJ to be greater than your orbit period (usually about 7-8K should be good.) Then increase or decrease TEJ and TIN until you get a minimum burn time. This is important, not because the SIVB has limited fuel (though it does) but mostly because the SPS has limited fuel, and we have to have just enough energy to get to the moon, so that lunar capture doesn't take an insane amount of force.

On the other MFD it's a good idea to set map. This doesn't guarantee that you'll get an accurate projection, but it's nice to see what you're going to be able to expect. The map becomes significantly more accurate on the same orbit as the TLI burn.

Here is the MFD going into TLI (this is the plan that loads with the "Apollo 14 - Go for TLI" scenario.

File:Pre-TLI.JPG

Important to note is that the blue line indicates the intersection point at which you will transition from the green orbit (current) to the blue orbit (transfer).

The TLI can be done in quickstart mode by simply hitting page to get to the second page of the course program and selecting AB (autoburn).

The TLI will happen automatically and the spacecraft will leave earth orbit.

This is IMFD after the burn (don't worry if yours doesn't look this perfect, it is not extremely important).

File:Post-TLI.JPG

Well, like hundreds of virtual astronauts before you, you are headed to the moon. At this point we are joined by the "Apollo 14 - After TLI" scenario.

Trans-Lunar Coast

Congratulations. You are on your way to the moon. But the apollo astronauts didn't just eat, sleep, and talk all the way to the moon. There is plenty to do. Well, ok, there are some things that will need to be done. Obviously you aren't ready to land on the moon yet. If you look at the outside of your ship, you'll notice that you don't even have a lunar module. It would be pretty embarassing to get all the way to the moon and realize you forgot the LEM back home. Fortunately, it was launched towards the moon with you, and is sitting safely inside the SIV-B stage. To get to it, you have to do a Transposition and Docking. Fortunately for you, this is relatively routine. If you can dock in orbiter at all, you can do this maneuver.

Of course, if it's inside the SIV-B, that means that you need to leave the SIV-B to get to it. Fortunately, there is a switch made just for that on your panel. But first, let's orient to make this job a little easier.

Transposition and Docking

A basic breakdown of this procedure is here.This is best done quite a while after the TLI. In the real missions it was done between three and four hours after the TLI. There are a number of reasons for that, but the most important is that by this time, your trajectory has become relatively linear. So if you point at an object (say the sun) it won't move on you. Ok, let's do that. You want to look at your upper left window (From the full size main panel, hit ctrl+Up then ctrl+Left. From the split panel, go to panel 1 then hit ctrl+Up.). You should see the sun somewhere near that window. Moving it to the right edge of that window will put it in a good spot to light up the docking target on the lunar module.

At this point, we are ready to separate from the SIV-B and get our LEM. Press J or use the switch on the panel (In the double vertical columns of covered black switches, it's the bottom one on the left column). You will start floating away from the SIV-B. That's ok, it's not very fast, and it's only in the forward direction.

Now to dock.

Switch to the same window you used to find the sun and position the COAS (click on the gray rectangular object).
Pitch up until the COAS is positioned near the docking target on the LEM. (Pitching up will help unsure a close to correct orientation.
Align with the LEM so that the "upside down T" is aligned with the crosshairs of your COAS (You may want to zoom in for this maneuver)
File:COAS-ALIGNED-LEMTARGET.JPG
Use translation thrust to close on the LEM being sure to keep the "red" hidden behind the black of the target.
As you close, make sure you keep your attitude and position aligned so that you don't end up arriving way off center.
File:COAS-LEM-FINALSTAGES.JPG
Eventually you will make contact and dock.

With the Transposition and docking done, you need to leave the SIV-B so you can get on with going to the Moon. To do so, simply hit J or the appropriate switch on the panel (On panel 1, the Launch and emergency switches, it is the far right on the top row of guarded switches.) In the real mission, the astronauts would have spent nearly an hour checking out the LEM connection to make sure they had a good hold of it and that they wouldn't leak air through the dock. In your mission however, this is not necessary, as you are such a good pilot, you have already assured a perfect connection. In the event it didn't go right, they would release the LEM and try again.

At this point, we're ready for the coast part of Trans Lunar Coast. So, sit back, grab a movie, and go. It was common during the next couple days for astronauts to perform various house keeping duties and final checkout of the LEM. Most importantly, they checked that things were behaving as they should prior to leaving the free return trajectory they had established. In Apollo 13 on (This includes the Apollo 14 mission we're doing) The mission left the free return trajectory in order to reach the preferred landing spot. We're going to go to Fra Mauro. Why? Well, first of all, that's where Apollo 14 actually landed, and Second, it's really a cool place to land.

To get there, we have to execute at least one mid course correction, so, let's do that.

Venting the SIV-B(Optional)

In the real missions, NASA vented the remaining fuel through the engine of the SIV-B as well as other points. This venting action was done in a particular direction in order to ensure that the SIV-B would never cross paths with the Apollo. One easy way to do this is to select the SIV-B stage and tell it to go prograde and burn it's engine until it's empty. You can then leave it, and ignore it, as it will try for as long as it can to burn prograde until it's fuel is exhausted. This SHOULD put it into orbit around the sun (as most of the original boosters did). Some of the boosters from the original missions were launched towards a collision with the moon to create artificial moonquakes. There's no point on doing so however on our mission, so we'll just make sure it stays out of our way.

Mid Course Corrections

At approximately 60 hours into the mission, you'll get a call to do the first mid course correction.

In the real missions, this is where they left the free return trajectory in order to establish a good orbit over their desired landing spot. We're going to go to Fra Mauro, because that's where Apollo 14 went. So, first we have to calculate our burn.

First, Open IMFD again, in both MFD's
On the left one, select Base Approach program instead of course. Set Reference to the Moon and Target to "Fra Mauro-Base"
Adjust Altitude till you are at 120 kilometers. In all actuality, you are going to end up at something like 115 kilometers, but you'll do just fine doing things this way.
When you are set up for your burn, you should look something like this:
File:MCC1-SETUP.JPG
Orient manually using the Burn Vector.
Select SIG COND/DRIVER BIAS POWER both switches to off (Panel 7, left of the main panel) so that the IMFD autoburn can work.
Perform autoburn. (Note, this is where "Apollo 14 - Before MCC1" scenario picks up.)
You will have to make adjustments during the burn to make sure you hit the 120K mark on the MAP. This means increasing altitude in the plan, as it isn't as accurate in prediction as the map is.
When you are done, the map should look something like this:
File:MCC1-COMPLETION.JPG
You have completed your first Mid Course Correction, and can now go back to coasting along. ("Apollo 14 - After MCC1" starts here.)

The first time, it's that simple. You simply have to get there.

At about 74-75 hours, you should do the second correction.

This time, again, use Base Approach mode, as explained for MCC1
To do the burn properly, it's more important where the MAP says you'll end up. So we want to ask the map. Open the map and select Plan. It'll say at the top Base-Approach Plan. In the field for PeA you want to aim for 120K. Adjust the Plan height until the Map height shows this altitude. (This is where "Apollo 14 - Before MCC2" scenario starts)
File:MCC2-SETUP.JPG
Orient using the Burn Vector and perform the Auto Burn.
When you're done with that, your IMFD should show you this:
File:MCC2-COMPLETION.JPG
You should be done with your mid course corrections and ready to begin lunar orbit insertion. This is where "Apollo 14 - After MCC2" scenario joins us.

Lunar Orbit Insertion

This section will detail the actual approach to and insertion into orbit around the moon.

Lunar Descent and Landing

This section will go into detail into the process of initiating Lunar Orbit Descent and of the final landing phase.

Lunar Ascent and Rendezvous

This section is going to explain all the steps required to get back to the CSM from the moon.

TEI

This section will take the users through the process of returning home.

Trans Earth Coast

This section will explain what to expect during the trans earth coast.

Mid Course Corrections

This section will contain guidelines to completing the Mid Course Corrections, as well as screenshots of the ones completed in the scenarios.

Earth Entry Approach

This section will detail the final corridor alignment procedure (shouldn't be necessary if the Mid Course Corrections did their job, but will be explained anyways) and will explain the process of shedding the Service Module prior to reentry.

Reentry and splashdown

This section will detail what to expect during reentry, ballistic descent, drag-assisted descent, and splashdown.